PyTorch 资源列表

这里是关于 PyTorch 的各类资源汇总,方便大家查阅。如果需要补充,请积极联系我们哦!

pytorch-logo-dark

 

本文收集了大量基于 PyTorch 实现的代码链接,其中有适用于深度学习新手的“入门指导系列”,也有适用于老司机的论文代码实现,包括 Attention Based CNN、A3C、WGAN等等。所有代码均按照所属技术领域分类包括机器视觉/图像相关、自然语言处理相关、强化学习相关等等。所以如果你打算入手这风行一世的 PyTorch 技术,那么就快快收藏本文吧!

PyTorch 是什么?

PyTorch即 Torch 的 Python 版本。Torch 是由 Facebook 发布的深度学习框架,因支持动态定义计算图,相比于 Tensorflow 使用起来更为灵活方便,特别适合中小型机器学习项目和深度学习初学者。但因为 Torch 的开发语言是Lua,导致它在国内一直很小众。所以,在千呼万唤下,PyTorch应运而生!PyTorch 继承了 Troch 的灵活特性,又使用广为流行的 Python 作为开发语言,所以一经推出就广受欢迎!

目录:

  1. 入门系列教程
  2. 入门实例
  3. 图像、视觉、CNN相关实现
  4. 对抗生成网络、生成模型、GAN相关实现
  5. 机器翻译、问答系统、NLP相关实现
  6. 先进视觉推理系统
  7. 深度强化学习相关实现
  8. 通用神经网络高级应用

入门系列教程

PyTorch Tutorials

著名的“莫烦”PyTorch系列教程。

Deep Learning with PyTorch: a 60-minute blitz

PyTorch官网推荐的由网友提供的60分钟教程,本系列教程的重点在于介绍PyTorch的基本原理,包括自动求导,神经网络,以及误差优化API。

Simple examples to introduce PyTorch

由网友提供的PyTorch教程,通过一些实例的方式,讲解PyTorch的基本原理。内容涉及Numpy、自动求导、参数优化、权重共享等。

入门实例

Ten minutes pyTorch Tutorial

知乎上“十分钟学习PyTorch“系列教程的源码。

Official PyTorch Examples

官方提供的实例源码,包括以下内容:

  • MNIST Convnets
  • Word level Language Modeling using LSTM RNNs
  • Training Imagenet Classifiers with Residual Networks
  • Generative Adversarial Networks (DCGAN)
  • Variational Auto-Encoders
  • Superresolution using an efficient sub-pixel convolutional neural network
  • Hogwild training of shared ConvNets across multiple processes on MNIST
  • Training a CartPole to balance in OpenAI Gym with actor-critic
  • Natural Language Inference (SNLI) with GloVe vectors, LSTMs, and torchtext
  • Time sequence prediction – create an LSTM to learn Sine waves

PyTorch Tutorial for Deep Learning Researchers

据说是提供给深度学习科研者们的PyTorch教程。教程中的每个实例的代码都控制在30行左右,简单易懂,内容如下:

  • PyTorch Basics
  • Linear Regression
  • Logistic Regression
  • Feedforward Neural Network
  • Convolutional Neural Network
  • Deep Residual Network
  • Recurrent Neural Network
  • Bidirectional Recurrent Neural Network
  • Language Model (RNN-LM)
  • Generative Adversarial Network
  • Image Captioning (CNN-RNN)
  • Deep Convolutional GAN (DCGAN)
  • Variational Auto-Encoder
  • Neural Style Transfer
  • TensorBoard in PyTorch

PyTorch-playground

PyTorch初学者的Playground,在这里针对一下常用的数据集,已经写好了一些模型,所以大家可以直接拿过来玩玩看,目前支持以下数据集的模型。

  • mnist, svhn
  • cifar10, cifar100
  • stl10
  • alexnet
  • vgg16, vgg16_bn, vgg19, vgg19_bn
  • resnet18, resnet34, resnet50, resnet101, resnet152
  • squeezenet_v0, squeezenet_v1
  • inception_v3

图像、视觉、CNN相关实现

PyTorch-FCN

FCN(Fully Convolutional Networks implemented) 的PyTorch实现。

Attention Transfer

论文 “Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer” 的PyTorch实现。

Wide ResNet model in PyTorch

一个PyTorch实现的 ImageNet Classification 。

CRNN for image-based sequence recognition

这个是 Convolutional Recurrent Neural Network (CRNN) 的 PyTorch 实现。CRNN 由一些CNN,RNN和CTC组成,常用于基于图像的序列识别任务,例如场景文本识别和OCR。

Scaling the Scattering Transform: Deep Hybrid Networks

使用了“scattering network”的CNN实现,特别的构架提升了网络的效果。

Conditional Similarity Networks (CSNs)

《Conditional Similarity Networks》的PyTorch实现。

Multi-style Generative Network for Real-time Transfer

MSG-Net 以及 Neural Style 的 PyTorch 实现。

Big batch training

《Train longer, generalize better: closing the generalization gap in large batch training of neural networks》的 PyTorch 实现。

CortexNet

一个使用视频训练的鲁棒预测深度神经网络。

Neural Message Passing for Quantum Chemistry

论文《Neural Message Passing for Quantum Chemistry》的PyTorch实现,好像是讲计算机视觉下的神经信息传递。

对抗生成网络、生成模型、GAN相关实现

Generative Adversarial Networks (GANs) in PyTorch

一个非常简单的由PyTorch实现的对抗生成网络

DCGAN & WGAN with Pytorch

由中国网友实现的DCGAN和WGAN,代码很简洁。

Official Code for WGAN

WGAN的官方PyTorch实现。

DiscoGAN in PyTorch

《Learning to Discover Cross-Domain Relations with Generative Adversarial Networks》的 PyTorch 实现。

Adversarial Generator-Encoder Network

《Adversarial Generator-Encoder Networks》的 PyTorch 实现。

CycleGAN and pix2pix in PyTorch

图到图的翻译,著名的 CycleGAN 以及 pix2pix 的PyTorch 实现。

Weight Normalized GAN

《On the Effects of Batch and Weight Normalization in Generative Adversarial Networks》的 PyTorch 实现。

机器翻译、问答系统、NLP相关实现

DeepLearningForNLPInPytorch

一套以 NLP 为主题的 PyTorch 基础教程。本教程使用Ipython Notebook编写,看起来很直观,方便学习。

Practial Pytorch with Topic RNN & NLP

以 RNN for NLP 为出发点的 PyTorch 基础教程,分为“RNNs for NLP”和“RNNs for timeseries data”两个部分。

PyOpenNMT: Open-Source Neural Machine Translation

一套由PyTorch实现的机器翻译系统。

Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Facebook AI Research 论文《Deal or No Deal? End-to-End Learning for Negotiation Dialogues》的 PyTorch 实现。

Attention is all you need: A Pytorch Implementation

Google Research 著名论文《Attention is all you need》的PyTorch实现。

Improved Visual Semantic Embeddings

一种从图像中检索文字的方法,来自论文:《VSE++: Improved Visual-Semantic Embeddings》。

Reading Wikipedia to Answer Open-Domain Questions

一个开放领域问答系统DrQA的PyTorch实现。

Structured-Self-Attentive-Sentence-Embedding

IBM 与 MILA 发表的《A Structured Self-Attentive Sentence Embedding》的开源实现。

先进视觉推理系统

Visual Question Answering in Pytorch

一个PyTorch实现的优秀视觉推理问答系统,是基于论文《MUTAN: Multimodal Tucker Fusion for Visual Question Answering》实现的。项目中有详细的配置使用方法说明。

Clevr-IEP

Facebook Research 论文《Inferring and Executing Programs for Visual Reasoning》的PyTorch实现,讲的是一个可以基于图片进行关系推理问答的网络。

深度强化学习相关实现

Deep Reinforcement Learning withpytorch & visdom 

多种使用PyTorch实现强化学习的方法。

Value Iteration Networks in PyTorch

Value Iteration Networks (VIN) 的PyTorch实现。

A3C in PyTorch

Adavantage async Actor-Critic (A3C) 的PyTorch实现。

通用神经网络高级应用

PyTorch-meta-optimizer

论文《Learning to learn by gradient descent by gradient descent》的PyTorch实现。

OptNet: Differentiable Optimization as a Layer in Neural Networks

论文《Differentiable Optimization as a Layer in Neural Networks》的PyTorch实现。

Task-based End-to-end Model Learning

论文《Task-based End-to-end Model Learning》的PyTorch实现。

DiracNets

不使用“Skip-Connections”而搭建特别深的神经网络的方法。

ODIN: Out-of-Distribution Detector for Neural Networks

这是一个能够检测“分布不足”(Out-of-Distribution)样本的方法的PyTorch实现。当“true positive rate”为95%时,该方法将DenseNet(适用于CIFAR-10)的“false positive rate”从34.7%降至4.3%。

Accelerate Neural Net Training by Progressively Freezing Layers

一种使用“progressively freezing layers”来加速神经网络训练的方法。

Efficient_densenet_pytorch

DenseNets的PyTorch实现,优化以节省GPU内存。

如果您有什么资源需要加入到本列表,请在下方留言,谢谢!

列表贡献者:集智AI学园

发表回复

您的电子邮箱地址不会被公开。

评论列表(3)

  1. 需要一个CNN+LSTM+ATTENTION机制的代码,能够对视频中行为进行分类

返回顶部