很多时候我们要对学习率(learning rate)进行衰减,下面的代码示范了如何每30个epoch按10%的速率衰减:
1 2 3 4 5 | def adjust_learning_rate(optimizer, epoch): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" lr = args.lr * (0.1 ** (epoch // 30)) for param_group in optimizer.param_groups: param_group['lr'] = lr |
什么是param_groups?
optimizer通过param_group来管理参数组.param_group中保存了参数组及其对应的学习率,动量等等.所以我们可以通过更改param_group[‘lr’]的值来更改对应参数组的学习率。
1 2 3 4 5 6 7 8 | # 有两个`param_group`即,len(optim.param_groups)==2 optim.SGD([ {'params': model.base.parameters()}, {'params': model.classifier.parameters(), 'lr': 1e-3} ], lr=1e-2, momentum=0.9) #一个参数组 optim.SGD(model.parameters(), lr=1e-2, momentum=.9) |
参考资料:link
本站微信群、QQ群(三群号 726282629):