[莫烦 PyTorch 系列教程] 4.4 – AutoEncoder (自编码/非监督学习)

PyTorch入门实战教程

神经网络也能进行非监督学习, 只需要训练数据, 不需要标签数据. 自编码就是这样一种形式. 自编码能自动分类数据, 而且也能嵌套在半监督学习的上面, 用少量的有标签样本和大量的无标签样本学习.

这次我们还用 MNIST 手写数字数据来压缩再解压图片.

然后用压缩的特征进行非监督分类.

训练数据

自编码只用训练集就好了, 而且只需要训练 training data 的 image, 不用训练 labels.

这就是一张我们要训练的手写数字 4.

AutoEncoder

AutoEncoder 形式很简单, 分别是 encoder  和 decoder , 压缩和解压, 压缩后得到压缩的特征值, 再从压缩的特征值解压成原图片.

训练

训练, 并可视化训练的过程. 我们可以有效的利用 encoder 和 decoder 来做很多事, 比如这里我们用 decoder 的信息输出看和原图片的对比, 还能用 encoder 来看经过压缩后, 神经网络对原图片的理解. encoder 能将不同图片数据大概的分离开来. 这样就是一个无监督学习的过程.

画3D图

3D 的可视化图挺有趣的, 还能挪动观看, 更加直观, 好理解.

所以这也就是在我 github 代码 中的每一步的意义啦.

文章来源:莫烦

PyTorch入门实战教程
除特别注明外,本站所有文章均为 PyTorch 中文网原创,转载请注明出处:https://www.pytorchtutorial.com/4-4-autoencoder/

Leave a Reply

Your email address will not be published. Required fields are marked *

返回顶部