您的位置 首页 PyTorch 教程

[莫烦 PyTorch 系列教程] 3.6 – 优化器 (Optimizer)

PyTorch入门实战教程

这节内容主要是用 Torch 实践几种优化器, 这几种优化器具体的优势不会在这个节内容中说了, 所以想快速了解的话, 上面的那个动画链接是很好的去处.

下图就是这节内容对比各种优化器的效果:

伪数据

为了对比各种优化器的效果, 我们需要有一些数据, 今天我们还是自己编一些伪数据, 这批数据是这样的:

每个优化器优化一个神经网络

为了对比每一种优化器, 我们给他们各自创建一个神经网络, 但这个神经网络都来自同一个 Net 形式.

优化器 Optimizer

接下来在创建不同的优化器, 用来训练不同的网络. 并创建一个 loss_func  用来计算误差. 我们用几种常见的优化器, SGD , Momentum , RMSprop , Adam .

训练/出图

接下来训练和 loss 画图.

SGD  是最普通的优化器, 也可以说没有加速效果, 而 Momentum  是 SGD  的改良版, 它加入了动量原则. 后面的 RMSprop  又是 Momentum  的升级版. 而 Adam  又是 RMSprop  的升级版. 不过从这个结果中我们看到, Adam  的效果似乎比 RMSprop  要差一点. 所以说并不是越先进的优化器, 结果越佳. 我们在自己的试验中可以尝试不同的优化器, 找到那个最适合你数据/网络的优化器.

所以这也就是在我 github 代码 中的每一步的意义啦.

文章来源:莫烦

本站微信群、QQ群(三群号 726282629):

PyTorch入门实战教程

发表回复

您的电子邮箱地址不会被公开。

返回顶部